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1    Introduction 

Fast Multipole Method (FMM) belongs to a class of algorithms developed for the rapid 
evaluation of Coulombic interactions in large-scale particle ensembles. In two dimen- 
sions, the existing implementations of the FMM rely on Taylor or Laurent (multipole) 
expansions for the potential field (see [2],[4]), while the three-dimensional ones are based 
on spherical harmonics (see [4]). The expansions, as well as the corresponding transla- 
tion operators, are obtained algebraically from explicit formulas relating the Newtonian 
potential and its partial derivatives at various locations. 

In this paper, we construct a version of the FMM based on a different analytical 
apparatus. Instead of multipole and Taylor expansions, we use specially designed bases, 
consisting of singular functions of an appropriately chosen operator. The expansions 
we use display much faster convergence than the previously used ones. In addition, 
we introduce an intermediate representation consisting of complex exponentials, and 
diagonalizing most translation operators. When these two techniques are combined, the 
resulting algorithm is about five times faster than the old one for reasonably uniform 
distributions, and about three times faster for highly non-uniform ones. 

The structure of this paper is as follows. Section 2 introduces the mathematical 
preliminaries. In Section 3 we describe the analytical apparatus to be used. Section 4 
contains a detailed description of the algorithm, together with its complexity analysis. 
Numerical experiments and the performance of the scheme are discussed in Section 5. 

2    Mathematical preliminaries 

2.1    Notation 

For any number 5 > 0 we will denote by Df the boundary of the square [-f, f ] x [-|, |], 
and by i^^* the boundary of the square [-|, f ] x [-f, f ] (see Figure 1). 

We will call Q.f the open square within the inner square Df and fi°"* the region 
outside the outer square D°^\ If s = 1, we will simply write D'" for iP(", Z)°"* for DJ"*, 
0'" for 9.^ and fi°"* for 0°"*. 

We will denote by Bf the set consisting of the rectangle [-^, ^] x [-^, y] minus 
two squares [-f, f ] x [-f, ^] and [-f, f ] x [-^, ^] (see Figure 2). 

For any s > 0 and a complex number ZQ = Xo + iyo, we denote by fi^^^^ the open  
square (XQ -f,Jo +1) x (t/o -1,2/o + f)• Finally, we define the region nf'l by'the formula       9^ 

For any set 5 C R^ we will denote its closure by S.  . 
In agreement with standard practice, we will denote by P the Hilbert space of all  

complex sequences x = {x^}, such that ^'^^^ | XnP < oo, with the inner product defined 
■;>*i: 

1 LJsi^^-^^^yi? f^a 
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by the formula 
oo 

{^,y) = ^xny^. (1) 
n=l 

The standard basis of P will be denoted by ei, 62,  
Let X be a piecewise smooth curve in R^.  A function f : X ^ € belongs to the 

vector space L^(X), if and only if, 

\\f\\i^iX)'^{l^\f{x)\Uxf<oo, (2) 

where the integration is performed with respect to the arclength dx. We say that a 
function / : X —> C belongs to the space L°°{X), if and only if, 

||/IU~(X) = esssup|/(a;)| < 00. (3) 

2.2    Electrostatic potentials in two dimensions 

In this section we list several facts from mathematical analysis, which will be used 
throughout the paper; all of them are either well-known, or follow immediately from 
well-known results. 

A unit charge located at the point XQ € R.^ generates a potential and a field given, 
respectively, by the expressions 

$xo(x) = -log(||x-xo||), (4) 

In this paper we will work with analytic functions of a complex variable, making no 
distinction between a point x = (x,z/) € R^ and a complex number z = x + iy. 

Since 
$xo(x) = -Re(log(0-2:o)), (6) 

following standard practice, we will refer to the analytic function log(z) as the poten- 
tial due to a charge. To describe more complicated charge distributions we will need 
derivatives of log(2;), and we will also refer to them as potentials. 

The following lemma is an immediate consequence of the Cauchy-Riemann equations. 

Lemma 2.1 /// : C ^ C is analytic and 

uiz) = Re{f{z)), (7) 

then 
Vu = (u„ uy) = {Re (/'), -Im (/')). (8) 



2.3    Hilbert-Schmidt theory for integral operators 

Let X and Y be piecewise smooth curves in R^. We will be working with Lebesgue spaces 
L'^{X) and L^{Y) of functions square integrable with respect to arclength measures dx 
and dy. The product space L'^{X x Y) consists of functions k : X xY ^ ^, such that 

2 

ll^||L2(;fxy) =       JJ\k{x,y)\Uxdy\     < oo. (9) 
V XxY j 

We start with a well-known lemma (see, for example, [7], sec.VI.6). 

Lemma 2.2 IfkE L^{X x Y), then the expression 

Af{x)= f k{x,y)f{y)dy (10) 

defines a continuous operator A : L^iY) —»■ L^{X), and 

\\A\\ < \\k\\mx>cY). (11) 

Remark 2.3 The integral operator induced by a kernel k € L^{X x Y) via formula (10) 
is usually referred to as a Hilbert-Schmidt operator (see, for example, [7]). 

The following, is an immediate consequence of Theorem VI. 17. in [7] 

Theorem 2.4 IfkE L'^{X x Y), then there exist two orthonormal systems of functions 
{(f>n} in L^{Y) and {^„} in L^{X), and a sequence {sn}, n=l,2,..., of non-negative real 
numbers such that 

oo 

1- E s^ < OO, (12) 
n=l 
00 

K^^y)=^Sntl}n{x)(t>n{y), (13) 
n=l 

in  L^{X X  Y)   sense.      Moreover,   the  sequence   {s^}   is   uniquely   determined  by 
k e L\X X Y). 

Theorem 2.5 (Canonical form for Hilbert-Schmidt operators) 
Let A : L^{Y) —> L^{X) be the integral operator induced by a kernel k G L'^{X x Y) via 
expression (10). Then, for any f £ L'^{Y), 

oo 

Af=Y.^n{fAn)i^n, (14) 
n=l 

where the functions ipn, ^n and numbers Sn are provided by Theorem 2.4- Equivalenty, 

A(j)n = 5„V'n, (15) 

for all n = 1,2,  



Remark 2.6 A finite dimensional version of Theorem 2.4 is known in numerical analysis 
as the Singular Value Decomposition (SVD); the coefficients s„ are referred to as the 
singular values of the operator A, and the functions 0„ and ^„ are called left and right 
singular vectors, respectively. 

To restate Theorem 2.4 in these terms, we define operators U : P -^ L'^i^) and 
V : P ^ L^{Y) by specifying them on the elements of the standard basis {e^} in P (see 
Sec. 2.1), via the formulae 

UCn =   ^n , (16) 

VCn =   <f>n . (17) 

Now, (14) can be rewritten in the form 

A = UDV*, (18) 

where D : P ^ P is a, diagonal operator with the coeflBcients 5„ on the diagonal, so that 
for all n = 1,2,..., 

Den = SnCn . (19) 

As in the finite dimensional case, U and V are isometries. 

Remark 2.7 Given an operator A : L^{Y) -^ P{X) defined by the formula (10), the 
operator A^ : P{X) -> P{Y) is referred to as the transpose of A if and only if for all 
/ G L''{Y) and g G L\X) 

{Af,g) = {A^gJ). (20) 

Similarly, the operator A* : L^{X) ->• L^{Y) is referred to as the adjoint of A if and only 
if for all / € L^{Y) and g € L\X) 

{Af,g) = {f,A*g). (21) 

The following well-known lemma gives explicit expressions for the operators A^ and A* 
in terms of the kernel of A. 

Lemma 2.8 // an operator A : L^{Y) -^ L'^{X) is defined by (10), then the operators 
A'^fA* : L^{X) -> L'^{Y) are defined, respectively, by the formulae 

A^f{y) = J^k{x,y)f{x)dx, (22) 

A*f{y)= fk{^f{x)dx. (23) 

The following lemma follows immediately from Lemma 2.8. 



Lemma 2.9 Let ^„ and <j)n be the left and right singular functions the operator A de- 
fined by (10), and s„ its singular values. For each n=l,2,..., we define the functions 
ij)l € L'^iY), <f)l € L^iX) via the formulae 

i>l - ^, (24) 

€ = Tn- (25) 

Then ip'^ and (jy^ are, respectively, the left and right singular functions of ^. Moreover, 

A^f^ = sr^xj^l (26) 

for all n=l,2,     Similarly,  the functions ^* 6 L'^iY), 4>n € Li^iX) defined for each 
n=l,2,..., via the formulae 

rn = ^n, (27) 

<l>: = V-n, (28) 

are left and right singular functions of A*, respectively. Furthermore, 

A*(i>: = s^rn, (29) 

for all n=l,2,  

3    Analytical apparatus 

3.1    Efficient representation of potentials 

We will define the operators Cout ■ L^D'"") -^ L'^{D'^^) and 
dn : L^D"""') -^ L\D''') by the formulae 

Coutf{z2) = I.  /^ ds{i), (30) 

Cin9{z^) = /   ^ ^ ds{i\ (31) 

where the integration is performed with respect to the arclength ds (see Section 2.1 for 
the definitions of JD'" and 1)°"*). In other words, the kernel k : i)°"* x D^" -^ C of the 
operator Cout is given by the expression 

^(2^2,2^1) = . (32) 
Z1-Z2 

Clearly, the operators Cout and dn satisfy the conditions of Theorem 2.4. Moreover, 
Cin = {Cout)'^ ■ Thus, a combination of Theorem 2.4 and Lemma 2.9 leads to the following 

result. 
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Theorem 3.1 There exist orihonormal systems {^°"*}, {^ij^"} in L^(D''") and {tj^'^}, 
{^°"*} in L'^{D°^*), and non-negative real numbers s„ such that 

4>T   =   ^ (33) 
C   =   ^rS (34) 

CinC     =    ^nV-r, (35) 
Co.,C*   =   snrn^\ (36) 

/or a// n=l,2, Moreover, 

1 °° 
M^2, ^l) = —— = E ^n  C(^l) C"*(^2). (37) 

^1 ~ ^2        „=i 

The following theorem provides estimates for the magnitude of the singular values 
and singular function of the operator Cout : i^(!>'") -^ L^{D°'^^). Its proof is somewhat 
involved, and can be found in Appendix A. 

Theorem 3.2  There exist constants 0 < qi < q < I and c> 0, ci > 0 such that 

ci?r < Sn, (38) 

Sn < cq"", (39) 

IICIloo < cn, (40) 
IIC"*lloo < cn, (41) 

for all n=l,2,  

Remark 3.3 Our numerical experiments show that the maximum values of the left 
singular functions V'n"* are uniformly bounded, while left singular functions ^^" grow as 
logn. Furthermore, the coefficient q in (39) is less then 0.37 (see Table 1). However, the 
crude estimates (38-41) are sufficient for the purposes of this paper. 

The following theorem states that the left singular functions ij}'^^ of the operator 
Cout are restrictions to D°^^ of functions analytic on fi'"'*, which are bounded at infinity. 
Similarly, the left singular functions (f^^ of the operator dn are restrictions to D'" of 
functions analytic on fi'" (see Section 2.1 for definitions of £>'", D""*, fi'", and 1)°''*). 

Theorem 3.4 Under the assumptions of Theorem 3.1, for each n=l,2,..., there exist 
complex analytic functions *°"* : fi°"* -^ C and ^'^ : fi'" -^ C such that 

1- KlDir^=^n, (42) 

2-    *riD-=V'r, (43) 

3. lim*r*(^) = 0. (44) 



Table 1: Singular values s„ of the operators dn and Co^ t- 

n Sn Sn+l/Sn 
1 0.2359412633095143E+01 0.3475452384309655E+00 
2 0.8200026261260834E+00 0.3621518314828151E+00 
3 0.2969654528722792E+00 0.3761602310170769E+00 
4 0.1117065933565274E+00 0.3490728065576352E+00 
5 0.3899373405395550E-01 0.3641002527554371E+00 
6 0.1419762842492349E-01 0.3639776390376512E+00 
7 0.5167619274037499E-02 0.3642521557376765E+00 
8 0.1882316460599726E-02 0.3616010580049082E+00 
9 0.6806476236529151E-03 0.3635779123075419E+00 

10 0.2474684420248163E-03 0.3637877346033592E+00 
11 0.9002598391003066E-04 0.3642466921090881E+00 
12 0.3279166684309465E-04 0.3627423712426653E+00 
13 0.1189492698766364E-04 0.3637184035515401E+00 
14 0.4326403854315149E-05 0.3638809145978704E+00 
15 0.1574295791427948E-05 0.3641545320448064E+00 
16 0.5732869472275525E-06 0.3631468873315051E+00 - 
17 0.2081873704334665E-06 0.3638008448531035E+00 
18 0.7573874125144114E-07 0.3639130712466957E+00 
19 0.2756231794117075E-07 0.3640962000883560E+00 
20 0.1003533522800739E-07 0.3633525072611107E+00 
21 0.3646364216302235E-08 0.3638425806137019E+00 
22 0.1326702566316864E-08 0.3639250220903513E+00 
23 0.4828202607541905E-09 0.3640572795205558E+00 
24 0.1757742306275760E-09 0.3634756451678426E+00 
25 0.6388965188123934E-10 0.3638654825924015E+00 
26 0.2324723901442769E-10 0.3639291306175649E+00 
27 0.8460347483779406E-11 0.3640298049003309E+00 
28 0.3079818643909223E-11 0.3635569373703303E+00 
29 0.1119689433835681E-11 0.3638789538842048E+00 
30 0.4074314198593252E-12 0.3639299339108355E+00 
31 0.1482764897026021E-12 0.3640095478003274E+00 
32 0.5397405796606410E-13 0.3636142130448670E+00 
33 0.1962573461216843E-13 0.3638873091614348E+00 
34 0.7141555758338406E-14 0.3639292924948542E+00 - 

35 0.2599021334444648E-14 0.3639940942646556E+00 
36 0.9460284166056962E-15 0.3636565040740656E+00 
37 0.3440293867375512E-15 0.3638927020226409E+00 
38 0.1251897831151196E-15 0.3639280307828200E+00 
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Proof. It follows from (38) that s„ > 0, for all n=l,2,.... Thus, (15) can be written as 

C"*(Z2) = s:' C,„,C*(^2) = s-' f ,  f^ dsiO, (45) 

for any z^ € D°^K Therefore, the formula 

*r(^2) = 6;^/^^^|^rf3(0 (46) 

extends V'n"* to a function *°"* continuous on 0°"* and analytic in 9,°'^K 
In a similar manner, we extend V'^ to an analytic function on the domain fi'", con- 

tinuous to the boundary Z)'", by setting 

¥:{zr) = s:' ca:{zi)=sz' f  ^ dsio. (4?) 
D 

Given a charge anywhere in the region fii'", the following two theorems allow us to 
represent its potential inside the region 0°"* by a Unear combination of left singular 
functions ^°"* of the operator Cout- Similarly, the potential of a charge in the region 17°''* 
can be expressed inside the region J)'" as a linear combination of left singular functions 
V'Ji"' of the operator Cj„. 

Theorem 3.5 For any z^ e D''^, z^ € D'"'*, 

1 
Z\ - Z2 

= E^nC(^i)V'r(^2). (48) 
n=l 

Moreover, there exists a constant ci > 0, such that for any zi € D'", Z2 € I>°"* and 
integer N > 0 

I 7^ - E 'n^ni^x) rl>T\z2) \ < c^ N' q^. (49) 

Proof. Let us define SN, N=1,2,. .., by the formula 

SN=E^n V'r C"*■ (50) 

It follows immediately from Theorem 3.2, that for there exists a constant ci > 0, such 
that for any integers M > A'' > 0, 

M M 

WSM-SNU = II E ^nCV'rMioo< E ^niivriiooiiV'nioo 
n=N+l n=N+l 
00 

<      E   c'n'q-<crN'q''. (51) 
n=N+l 



Since CiN'^q^ —^ 0 as N —^ oo, the sequence {S'jv} of continuous functions I2^i •SnV'n"'V'n"* 
converges in the maximum norm to a Hmit, which we denote by S. Due to Theorem 2.4, 
{SN} converges to the function    l_    in L^[D°'^^ x JD'"), so we have 

S{z,,z,) = ^—, (52) 
Zi - 22 

for all zi € D'"", Z2 e Z?""*. Thus, from (51) and (52) we obtain 

II — E ^nV'r €"1100 = \\S - SNWOO = II lim SM - SNWOO < ci N' ?^.     (53) 
Zl — Z2       ^_i M-KX> 

D 

Theorem 3.6 For any zi e fi'", Z2 G f^°"*, 

1 °° 
-—= E^n*r(^i)*r(^2). (54) 

2^1 --22 n=l 

Furthermore, there exists a constant Ci > 0, such that for any zx 6 0'", Z2 € fi°"*, and 
integer N > 0, 

^1 - ^2        „=i 

Proof. Due to a combination of the maximumi modulus principle for complex analytic 
functions and (49), we have 

^^^ ^^?u. 17^ - E ^n*jr(;2i) ^r (^2) I = iien'^^seoo"'   zi — Z2     jjZj 

1 ^ 
max   max  | E ^"^rC-^i) ^r*(-22) |   = 

1        ^ 
max   max  | E ^«C(-^i) V'r*(-22) |   <   ci iV^ ^^ (56) 

which proves (55), and (54) follows from (55) immediately. □ 

Let W^" and W°"* be the functions provided by Theorem 3.4. For any real num- 
ber 5 > 0 and point ZQ € fi^", we define analytic functions ^^^sz '• ^Tz ~^ ^ ^^^ 
Klzo ■• K^o -^ <C, n=l,2,..., by the formulae 

*t,.o(-i) = ;^<"(^^), (57) 
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^s..o(-2) = ^*r(^^), (58) 

for all zi € Cti\ and all za e n°%. Moreover, suppose that V'l" and ^°"* are the 
functions provided by Theorem 3.1. For any real number s > 0 and point ZQ G D^", we 
define functions 0^,,,^ : D';^^ ^ C and V^r^,,, : i^^t ^ <t^' n=l'2,. • •, by the formulae 

<.o(-i) = ;^«^), (59) 

do(-2) = ;^C"*(^^), (60) 

for all zi   G  D^";^^^  and all 22  G  -Df,"*   (^ee Section 2.1 for definitions of D'J^^^^D^l, 
Qin     C>out \ 

The following theorem is an immediate consequence of Theorem 3.6 and Theorem 3.1. 

Theorem 3.7 Suppose that s > 0 is a real number and ZQ € D^^. Then 
1.    The functions {^^"5,2^} form an orthonormal system in X^(Z)^" J.    The functions 
{'^n^s,zo) /'^'^"^ C''^ orthonormal system in L'^{D°^^). 
^' *n,s,zo  |£)out r'n,s,zo>  "        J.,<,,. . . . 

3. Foranyzren^,^,Z2£n°%, 

E^"*Wo(^l)*Wo(^2). (61) 
Zl- Z2 n=l 

Furthermore, there exist constants c> 0, 0 < q < I such that for any s > 0, zi £ fi^'^ , 
Z2 e 0.°s^l, and integer N > 0, 

I 7^ - E ^n*t,.o(^i) *wo(^2) \<-N' q^. (62) 

The following two theorems axe immediate consequences of Theorem 3.7. 

Theorem 3.8 Suppose that 
m 

$W = E-^ (63) 

is  the  potential due  to  a  set  of m   charges  of strengths  qi, q2,..., qm   located  at 
points  zi,Z2,...,Zm   inside   the  square  0,^^^.      Suppose further  that  the functions 
Ks,zo • ^Zo -" ^' K%o ■■ Kl -" ^   «^^ defined by the formulae (57), (58), and s^ 
are defined by (37). Then for any z € 0°^^, 

n=l 
$(2) = E«n*™(^). (64) 

1 

11 



with 
m 

^n = Sn^qi^Z,J^il (65) 
1=1 

for all n = 1,2,   Furthermore, there exist constants c > 0 and 0 < q <1, such that 
for any real number s > 0, integer N > 0 and z € n°"*, 

l$(^) - E an*:l.„(^)| < - N\''11U- (66) 
n=l ^ i=.\ 

Theorem 3.9 Suppose that $ given by the formula (63) is the potential due to a set of 
m charges of strengths qi, q2,--.,qm located at points zi,Z2, ...,Zm inside the region Cl°'^l. 
Suppose fuHher that the functions 'i'j,';,^^^ : n%^ -^ €, ^°^%^ : Cl°;^l -^ C are defined by 
the formulae (57), (58), and s„ are defined by (37). Then for any z € 0^"^^, 

oo 

$(^) = E «n'^t,.;(^), (67) 
n=l 

with 
m 

an = -SnY.<liKU'^i)^ (68) 
i=l 

for all n = 1,2,   Furthermore, there exist constants c > 0 and 0 < § < 1, such that 
for any real number 5 > 0 integer N > 0 and z € fit" , 

5)5.0 ^ 

N ^ 

^z) - E ar.^i\Jz)\ < ^ iV^E k«l- (69) 
n=l 5 i=i 

3.2    Translation Operators and Error Bounds 

The following five theorems allow us to translate expansions of the forms (64), (67) from 
one center ZQ to another, and to convert expansions of the form (64) into expansions of 
the form (67). We only provide proofs of Theorems 3.10, 3.11, 3.16 below; the proofs of 
Theorems 3.12, 3.14 are virtually identical to the proof of Theorem 3.10, while the proofs 
of Theorems 3.13, 3.15 are identical to the proof of Theorem 3.11. Thus, the proofs of 
Theorems 3.12, 3.13, 3.14, 3.15 are omitted. 

For a real number 5 > 0 and a point ZQ € €tf, we define coefficients p^^^^^^^ and 
Pn,k,s,zo' respectively, by the formulae 

with k = 1,2,..., and n = 1,2,  

pTk,s,.o = L, n:uo K%Ao MO. (70) 

<.,s,.o = L n\.o(0 *5;^ dsio, (71) 
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Theorem 3.10 Suppose that # defined by the formula (63) is the potential due to a 
set of m charges of strengths §1,92, •••,9m located in the square 9,i\, and ^°"*,^g are 
functions defined by (58), with n = 1,2, Suppose further that 

00 

Hz) = ^a^K^lJz), (72) 
71=1 

00 

Hz) = Y:bnK:L,o{'), (73) 
n=l 

are the expansions provided by Theorem 3.8 valid in fi°|^*  and VI^^Q, respectively.  Then 
for n = 1,2,... 

00 

with the coefficients pl%s,zo defined by (70). 

Proof. Since the functions {ipn%,o} form an orthonormal system in L^{D^'^^Q), 

^n     =      l,'Lhr^U')rn%,o{')ds{z) (75) 
•'^is.O k=l 

/■ 00   00 

=   X.. E«^^S.o(-) KU^)ds{z) = EPS.,.„«^, (76) 
•^^25,0 fc=l k=l 

for n = 1,2,  n 

Theorem 3.11 Suppose that under the conditions of Theorem 3.10, N > 0 is an integer 
and coefficients b^ (n = 1,2,. ..,N), are defined by the formula 

N 

I 
A;=l 

&^ = EKl.,.o«^' (77) 

'^'^'th P°nJz,s,zo defined by (70).  Then there exist constants c> 0 and 0 < q < 1, such that 
for any s > 0, N > 0 and z G Cl^f, 

N 
C 

M^) - E b^K:u^)\ < 7 Nu^j:\q,\. (78) 
n=l ^ i=l 

Proof. Let 0 < 9 < 1 be the constant provided by Theorem 3.8. Clearly, it is sufficient 
to show that 

N N 
C 

\EbnKU-)-Eb^K:U^)\   <   -^NYEhl (79) 
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for some constant c> 0. Now, by a combination of (39), (40), (41) and (65), 

IE bnKlM - E fe^*S,o(-)l = I ECfen - C)*:lo(-)l 
n=l n=l n=l 

N oo iV oo n     "^ 

= lEKloi^) E Kl..o«^l<E^i-^ E b3..ol^^4EI?^l 
n=l fc=N+l n=l        V-5 Jt=Ar+l V-S t=i 

_ m N        oo 

< JN^Ehl E E KLJ<i', (80) 

for some constants ci > 0, C2 > 0. Due to Schwarz's inequality and (41), there exists 
C3 > 0, such that for all positive integers k and n 

Ifr^lsJ < m:ljLHDi^:JK%jLHD^:,) < Csk. (81) 

Now (79) follows from (80) and (81). D 

Theorem 3.12 Suppose that $ defined by the formula (63) is the potential due to a 
set of m charges of strengths §1,52, •••,9m located in the square fi^^*, and '^t^^s,zo ^''^ 
functions defined by (57), with n = 1,2, Suppose further that 

00 

Hz) = ^ ar.%%^oi^) (82) 
n=l 

00 

H^) = j:bnK\J^), (83) 
n=l 

are the expansions provided by Theorem 3.9 valid in CI^^Q and fij^; respectively.  Then 
for n = 1,2,... formula 

00 

&n = EK"fc,.,.o«fc' (84) 
k=\ 

with the coefficients p^n,k,s,ZQ defined by (71). 

Theorem 3.13 Suppose that under the conditions of Theorem 3.12, N > 0 is an integer 
and coefficients b^ (n = 1,2,. ..,N), are defined by the formula 

N 

^n   =YlpT,k,^,zo(^k, (85) 

with p''^,k,s,zo defined by (71).  Then there exist constants c > 0 and 0 < q < 1, such that 
for any s > 0, integer N > 0 and z e Cl'ip^, 

N - m 

l^(^) - E inKs,o{')\ < - NY E hi- (86) 
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Suppose that 5 > 0 is a real number and ZQ € Cllf. For k = 1,2,..., and n = 1,2,..., 
we define coefficients qn,k,s,zo by the formula 

qn,k,s,.o = L *M,o(0 *t,.o(0 dsiO- (87) 

Theorem 3.14 Suppose that $ defined by the formula (63) is the potential due to a set 
of m charges of strengths ?i, 92, • • •, 9m located in the square fii", and ^°"*, , ^1" , are 
functions defined by (58) and (57), respectively. Suppose further that 

00 

^z) = Y: anKloi^), (88) 
71=1 

^{z) = j:^n^Z,J')^ (89) 
n=l 

are the expansions provided by Theorem 3.8 and Theorem 3.9 valid in Q,Tn  and (]'''  , 
respectively. Then for all n = 1,2,... the formula 

^n = m ^n,k,s,zo Ck, (90) 
k=l 

with the coefficients qn,k,s,zo defined by (87). 

Theorem 3.15 Suppose that under the conditions of Theorem 3.10, N > 0 is an integer 
and coefficients b^ (n = 1,2,... ,N), are defined by the formula 

N 

I 
fc=l 

^n   =^Qn,k,s,zoak, (91) 

with qn,k,s,zo defined by (87).  Then there exist constants c > 0 and 0 < q <l, such that 
for any s > 0, integer N > 0 and z e 0,^f, 

^ 
l^(^) - E b^KUz)\ < 7 N'q"" E hi (92) 

n=l ^ i=l 

The following two theorems Hst certain properties of the coefficients »'"-.     , D°"? . ^n,K,s,zo' fn,K,s,zo 
and qn,k,s,zo • They are quite similar, and we only prove the first one. 

Theorem 3.16 Suppose that s > G is a real number, ZQ G ft^", and the coefficients 
Pn%s,zo> Pn,k,s,zo ^^^ defined by formulae (70) and (71). Then 

P°n,k,s,zo  =P°n,k,l,^' (93) 

Pn,k,s,zo  - Pn,k,l,^^ (94) 

Pn,k,s,zo  ~ Pk,n,s,zo ' (95) 

with any k = 1,2,..., n = 1,2,  
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Proof. Due to (58) and (70) 

'2s,0 

=    Pk,n,l,^^ (96) 

which proves (93). The proof of (94) is identical. 
Turning our attention to (95), we observe that due to Theorem 3.1, 

=   Cn,i,^' (97) 

and (95) follows directly from (93), (94) and (97). D 

Theorem 3.17 Suppose that s > 0 is a real number, ZQ is an arbitrary point in 0^"*^ 
and the coefficients qn,k,s,zo o,re defined by formula (87). Then 

qn,k,s,zo = <ln,k,l,^i (98) 

for all k = 1,2,..., n = 1,2,  

3.3    Diagonal Form of Translation Operators 

In this section we construct a representation of potentials (63) in which the translation 
operators are diagonal. We start with an obvious lemma. 

Lemma 3.18 If z and ZQ are complex numbers such that Re {z - ZQ) > 0, then 

1 f°°       r      \ 
 = /    e-^(^-^°) c?a;. (99) 
Z — ZQ JQ ^      ^ 
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Table 2: Quadrature nodes and weights for A'^ = 8. 

k Xk Wk 

1 
2 
3 
4 
5 
6 
7 
8 

0.9743818326893713-01 
0.4917660712345750+00 
0.1147630094197554+01 
0.2028186101391804+01 
0.3121662089244688+01 
0.4425614160158614+01 
0.5925421085324173+01 
0.7601289009353128+01 

0.2469944279808820+00 
0.5328649552527160+00 
0.7724853603957714+00 
0.9870187246041202+00 
0.1200121694721202+01 
0.1405423586612871+01 
0.1592796104486006+01 
0.1765198353876860+01 

One of principal numerical tools of this paper is finite quadratures for the integrals 
of the form (99), approximating them by expressions of the form 

r 
Jo 

N 

(100) 

with Wj,Xj chosen to minimize the error of the approximation. It turns out that the 
classical Laguerre quadrature requires 56 nodes to obtain a full double precision (15-digit) 
approximation to (99) for all ZQ e 0.^ and z e Bi (see Section 2.1 for the definition of 
Bi); it requires 28 nodes for single precision (7-digit) approximation and 14 nodes for 
the 3-digit approximation. In this paper, we use quadratures for integrals of the form 
(99) designed in [9]. The nodes and weights for the quadratures are listed in Tables 2-5 
and the following lemma (proved in [9]) describes the performance of these quadratures 
when zo G ^i", z e Bi. 

Lemma 3.19 1. If the nodes Xi, a;2,..., xg one? the weights iwi, t«25 •■ • iW^ are those given 
in Table 2, then 

\— Y.'^k e-^^^^-^o)! < 10-' (101) 

for all Zo e Ct{'', z e Bi. 
2. If the nodes Xi, 0:2,..., xio and the weights Wi,W2,..., Ww are those given in Table 3, 
then 

1 ^° 
I Y.'^k e-^*(^-^o)| < 10-' (102) 

for all ZQ e fif, z € J5i. 
3. If the nodes Xi, X2,..., Xie and the weights Wi,W2,..., Wie are those given in Table 4, 
then 

1 ^^ 
\ 5^u;fce-^'=(^-^'')|<10-^ (103) 
^-^0     k=i 
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Table 3: Quadrature nodes and weights for N = 10. 

k Xk Wk 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

0.79400973700479499E-01 
0.40599675027044617E+00 
0.95860548270566906E+00 
0.17076338623411169E+01 
0.26342522431201576E+01 
0.37330678114549477E+01 
0.50056635563091912E+01 
0.64476147019688304E+01 
0.80499560865687445E+01 
0.98062704155363723E+01 

0.20213268247442060E+00 
0.44529201310708538E+00 
0.65492570079022383E+00 
0.83991908942837771E+00 
0.10125227869573986E+01 
0.11856981580215332E+01 
0.13587490932348730E+01 
0.15237759923040743E+01 
0.16815303253729583E+01 
0.18393633495134454E+01 

Table 4: Quadrature nodes and weights for N = 16. 

k Xk Wk 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

0.50985651676060708E-01 
0.26521044170119003E+00 
0.63877523197814055E+00 
0.11575210696261956E+01 
0.18084194569861214E+01 
0.25812535628463790E+01 
0.34688375582342864E+01 
0.44670816002182331E+01 
0.55752269484049922E+01 
0.67950948336753639E+01 
0.81285324158592802E+01 
0.95753440067592314E+01 
0.11133967001554676E+02 
0.12804196003878283E+02 
0.14590645231278096E+02 
0.16505707680646142E+02 

0.13042997567403943E+00 
0.29617079732513146E+00 
0.44851876604376186E+00 
0.58677848054269013E+00 
0.71331490632911526E+00 
0.83115583049433043E+00 
0.94332332670457377E+00 
0.10530465654290459E+01 
0.11635980151835418E+01 
0.12764875588622437E+01 
0.13903417411114886E+01 
0.15029785005709016E+01 
0.16142090491898996E+01 
0.17271419059134570E+01 
0.18490423387442165E+01 
0.19928836723099878E+01 
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Table 5: Quadrature nodes and weights for iV = 33. 

k Xk Wk 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 

0.25222297727341369E-01 
0.13247759128084677E+00 
0.32380669248023823E+00 
0.59671535823233030E+00 
0.94802704428024797E+00 
0.13742659894203061E+01 
0.18719475451288249E+01 
0.24377774897497581E+01 
0.30687681826830449E+01 
0.37622927481697938E+01 
0.45161007854489040E+01 
0.53283153101708052E+01 
0.61974248981676391E+01 
0.71222793332370721E+01 
0.81020919953769825E+01 
0.91364474341994351E+01 
0.10225307113296538E+02 
0.11368999161839711E+02 
0.12568170717361438E+02 
0.13823683086431786E+02 
0.15136452987314821E+02 
0.16507283044647311E+02 
0.17936750445208845E+02 
0.19425207754170005E+02 
0.20972906955216222E+02 
0.22580224099961821E+02 
0.24247959886492881E+02 
0.25977718733384464E+02 
0.27772422510974588E+02 
0.29637118447457170E+02 
0.31580471971364523E+02 
0.33617895925272799E+02 
0.35778138778825402E+02 

0.64680274571235485E-01 
0.14962720607997425E+00 
0.23260602282627724E+00 
0.31267567589062277E+00 
0.38936352755688915E+00 
0.46253028974011126E+00 
0.53228190405863132E+00 
0.59887920022585347E+00 
0.66266415869490855E+00 
0.72400998959978491E+00 
0.78329340463991183E+00 
0.84088382086631104E+00 
0.89714360915324316E+00 
0.95243401551568258E+00 
0.10071219382388539E+01 
0.10615826335963539E+01 
0.11161921501942585E+01 
0.11713015487646939E+01 
0.12271878679241548E+01 
0.12839926657455333E+01 
0.13416829044598757E+01 
0.14000734153500639E+01 
0.14589180106367176E+01 
0.15180347903942609E+01 
0.15774212769044868E+01 
0.16373402708097615E+01 
0.16983905310960812E+01 
0.17616017849285610E+01 
0.18286259025840425E+01 
0.19021749030833896E+01 
0.19870826536338642E+01 
0.20930613125138042E+01 
0.22428277080254514E+01 
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for all zoe^Y^! ^ ^ Bi. 
4- If the nodes Xi, 0:2,..., X33 and the weights wi,W2,..., 1^33 are those given in Table 5, 
then 

1 33 

I Y.'^k e-^^^^-^")] < 10-'' (104) 

for all zo^ f2i", zeBi. 

3.4    Informal Description 

Obviously, approximating the integral (99) by a finite quadrature formula gives rise to 
an approximation of the function ^^ by a finite linear combination of exponentials in 
each of the regions fl'i", Bi. Indeed, suppose that iVo is a natural number, and positive 
real numbers Xi, X2,..., xjVo, i^i, ^2; • • •, WN^ are such that 

I /    e-^(^-^°) dx-Y,m e-^'=(^-^°)| < £, (105) 
"'0 i._i 

for all ZQ G 05^", z ^ Bi^ and e a sufficiently small positive number. Clearly, (105) can be 
rewritten in the form 

1 No 

 X;«;fce-"'=(^-^<'), (106) 

and, given an arbitrary point w € jBi, (106) can be rewritten in the form 

iVo 1 -iVo 

z-z.       - (1°^) 

In other words, the potential of a charge at the point ZQ has been approximated by a 
linear combination of exponentials. For a potential $ given by the formula 

771 ^ 

^(-) = E737 (108) 

due to a set of m charges of strengths 91,92, • • •, ?m located at the points zi, 2:2, • • ■, -^m in 
the square f^i", the expression (107) assumes the form 

$(^) = E -^ - E c^ e-^''^''-\ (109) 
i=i ^    ^'       fc=i 

with the coefficients Ck defined by the formula 

m 

Ck = WkY,<li^'"''^'"""\ (110) 
i=l 
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for all k = 1,2,... ,A'o. We will view (109) as an expansion of the function $ into a linear 
combination of exponentials e~^*(^-^), centered at w. Now, given another point w e Bi, 
(109) assumes the form 

No 

^(^) ~ Ecfce-"*(^-'^), (111) 
k=i 

and, obviously, 
Cit = Cfce-^'=(-—), (112) 

for all k = 1,2, Thus, we are lead to the following observation. 

Observation 3.20 An expression of the form (111) represents the potential of an ar- 
bitrary combination of charges located in the region fif; and the representation is valid 
for all z e Bi. Furthermore, (112) can be interpreted to mean that in the representa- 
tion (HI), the translation operator for the potential fields is diagonal. In the following 
subsection we formalize this observation. 

3.5    Detailed Description 

In this section, we use Lemma 3.19 to obtain exponential representations of the form 
(111) for potentials generated by collections of charges located in Q,f at all scales 5 > 0. 
Error estimates for such representations are provided by Theorem 3.21 below. We start 
with the following obvious generaHzation of Lemma 3.19. 

Theorem 3.21 Suppose that e > 0 is a real number, and real numbers xi,X2,... ,XNg 
and wi,W2,.. ■,WNQ are such that 

I No 
I X^u;ne-'^"("-"°)|<e (113) 

for all ZQ e Cl'-i^, z e Bi. Suppose further that s > 0 is a real number, w G Bs, and the 
functions En,s,w :€->■€ (n=l,2,... ,NQ), are defined by the formula 

En,s,w{^) = - exp(-a;n ), (114) 
s s 

for all z ^ C. Finally, suppose that 

m 

«W = E7^ (115) 
i-l Zt       z 

is the potential due to a set of m charges of strengths qi,q2,...,qm located at points 
zi,Z2,.. .,Zm inside the square fi^".  Then for any z e Bg 

No m 

|$(^)-X:&n£^n,.,.(^)|<-EN, (116) 
n=l ^ ,=1 
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with 
^ ty — z- 

K = WnJ^Qi exp{-Xn -), (117) 

for all n = 1,2,...,NQ. 

The following theorem is an immediate consequence of the definition (114) of the 
functions En,s,w 

Theorem 3.22 Suppose that under the conditions of Theorem 3.21, w,w ^ Bg and 

No 

$(z) ~ J2 (^nEn,sA^), (118) 
n=l 

No 

^{^) ~ E bnEn,sA^), (119) 
n=l 

are the expansions provided by Theorem 3.21. Then 

w — w. 
bn = eXJ>{-Xn ) On, (120) 

for all n = 1,2,...,NQ. 

Suppose that s > 0 is a real number, w e Bs and '^'^l^, En,s,w are functions defined 
by (58) and (114), respectively. We will define coefficients rnXs,w by the formula 

rn,k,s,^ = -r- L *t,o(0 Er.,,,^{w) dsiO, (121) 

where si, S2,..., are given by (37) and k = 1,2,..., and n = 1,2,..., NQ. 

Theorem 3.23 Suppose that s > 0 is a real number, $ given by the formula (63) is the 
potential due to a set of m charges of strengths qi,q2,...,qm located in the square Q,'^, 
and 

oo 

$(z) = E ar^Kloi^), (122) 
n=l 

is the expansion provided by Theorem 3.8. Suppose further, that e > 0 is a real number 
and 

No 

H^) ~ E bnEn,sA^), (123) 
n=l 

is the approximation provided by Theorem 3.21. Then for n = 1,2,. ..,No 

00 

&n = E '^ri,k,s,w CLk, (124) 
k=\ 

with rn,k,s,w defined by (121). 
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Proof. Due to (58), Theorem 3.1 and Theorem 3.21 

\/s s       ys s 

V"5        „=i      JDI'^ 

V-S n=l -^^J" -S 

~      2^ '''n,k,s,w-l^n,s,w{z)i (125) 
n=l 

for each A; = 1,2, Now (124) follows immediately from (125). D 

Suppose that 5 > 0 is a real number, w € Bs and *°"*^„, En,s,w are functions defined 
by (58) and (114), respectively. We will define coefficients en,k,s,w by the formula 

enXs,. =   /^..„ WToiO En,sAO MO, (126) 

k = 1,2,..., and n = 1,2,..., A^o- 
The proof of the following theorem is quite similar to that of Theorem 3.8, and is 

omitted. 

Theorem 3.24 Suppose that s > 0 is a real number, $ given by the formula (63) is the 
potential due to a set of m charges of strengths qi,q2,...,qm located in the square Q,^, 
and 

oo 

$(z) = E^'^*t,o(^), (127) 
k=i 

is the expansion provided by Theorem 3.9. Suppose further, that e > 0 is a real number 
and 

No 

^Z) ~ E '^nEn,sA^), (128) 
n=l 

is the approximation provided by Theorem 3.21. Then fork = 1,2,... 

No 

h = Yl ^n,k,s,w an, (129) 
n=l 

with en,k,s,w defined by (126). 
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Level 0 Level 1 

Level 2 Level 3 

Figure 3: The computational box and three 
levels of refinement. 

4    The multipole algorithm 

4.1    Notation 

Without a loss of generality we can assume that all particles are located in the unit 
square centered at the origin. We will refer to this square as the computational box. A 
hierarchy of meshes is introduced in the computational box. Mesh level 0, denoted by 
^0, corresponds to the entire computational box. Mesh level / + 1, denoted by 5/+i, 
is obtained from mesh level / by subdividing some boxes into four equal squares (see 
Figure 3), which will be referred to as children of the given square. We fix an integer 
number s > 0 and at each level we subdivide only those boxes, which contain more than 
s particles. A box which is not subdivided is called childless. 

Colleagues of a box are adjacent boxes of the same size. 
Two boxes of the same size which are not adjacent, are called separated. 
For each box b there are four lists of other boxes, defined as follows. 
List 1 of a box b is denoted by Ub] if 6 is childless, it consists of b and all childless 

boxes adjacent to b. If 6 is a parent box, then Ub is empty. 
List 2 of a box b is denoted by H. Vb is formed by all the children of the colleagues 

of 6's parent which are separated from b (see Figure 4). 
List 3 of a box b is denoted by Wb. If b is childless, Wb consists of all descendants of 
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Figure 4: Interaction List 2 for a dashed box. 

6's colleagues whose parents are adjacent to b, but which are not adjacent to b themselves. 
If 6 is a parent box, Wb is empty. 

List 4 of a box b is denoted by Xy, it consists of all boxes b' such that b' €Wb. 
^j"* will denote the p-term expansion of the form (64) of the potential due to particles 

located in b. 
*j" will denote the p-term expansion of the form (64) of the potential due to particles 

located outside UbliWb. 

4.2    Informal description of the algorithm 

The data structure used by our algorithm is virtually identical to the one presented in 
[2]. It relies on clustering of particles at various scales. The computation of interactions 
between clusters separated from each other is performed via the expansions (64) and 
(67), while the interactions between nearby particles are computed directly. 

In order to adapt our grid to a given distribution of particles we fix an integer 5 > 0 
and subdivide only those boxes which contain more than s particles. 

The algorithm consists of the following stages. 
(1) We create a hierarchy of meshes in a computational cell. 
(2) For each childless box 6 we directly evaluate interactions between particles in b 

and particles in Ub, List 1 of b. 
(3) For each childless box b we form the expansion $^"* into outgoing singular func- 

tions by means of Theorem 3.8. 
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Figure 5: A box and associated Lists 1-4. 
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(4) For each parent box b we form the expansion ^j''* by merging expansions of its 
children via Theorem 3.12. 

(5) We convert all expansions "^S^^ into the exponential form via Theorem 3.23. 
(6) We use Theorem 3.22 to shift the q-term exponential expansion to each box in 

H, List 2 of b. 
(7) For every particle r € 6, we compute the field due to all particles in Wb, List 3 of 

6, by summing up the expansions *^"* for all w eWb and add it to the potential at this 
point calculated in (1). 

(8) We convert the field of each particle in Xb, List 4 of 6, into the expansion ^^"■. 
(9) We convert all exponential expansions into expansions ^^" via Theorem 3.24 and 

combine them with the result of (8). 
(10) For each child box b we shift the expansion of its parent (Theorem 3.9) and add 

it to the expansion ^j,". 
(11) For each childless box b we evaluate the expansion Vfr'" at every particle r € 6 

and add it to the result of (7), obtaining the field at r. 

4.3    Detailed description of the algorithm 

ALGORITHM 

Comment [Choose main parameters.] 
Choose precision e to be achieved. Set the length of expansions according to 

Table 1. 
Set the maximum number s of particles in a childless box. 

Step 1 

Comment [Refine a computational cell into a hierarchy of meshes.] 

do 1 = 1,2,... 
do bi € Bi 

if bi contains more than s particles then 
subdivide 6, into four boxes and add the nonempty boxes 
formed to Bi+i. 

end if 
end do 

end do 

Comment [We denote by nlev the highest level of refinement and by nbox the total 
number of boxes formed at Step 1.] 
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step 2 

Comment [For every particle in each childless box h compute directly the 
interactions with particles in t/j, List 1 of h] 

do i = l,nbox 
if hi is a childless box then 

for each particle r 6 6i compute interactions between r and 
all particles in f/j,,.. 

end if 
end do 

Step 3 

Comment [For every childless box h form an expansion into outgoing singular 
functions about the center of h via Theorem 3.8.] 

do i = l,nbox 
if hi is a childless box then 

use Theorem 3.7 to form a p-term expansion $j"* 
representing the potential due to all charges in hi. 

end if 
end do 

Step 4 

Comment [For each parent box h use Theorem 3.10 to shift the center of each 6's 
child box's expansion to 6's center and add the resulting expansions 
together.] 

do 1 = nlev-1,1,-1 
do hi e Bi 

if bi is a parent box then 
use Theorem 3.10 to obtain a p-term expansion $j"* by 
shifting expansions of B,'s children to h and adding the 
resulting expansions together. 

end if 
end do 

end do 

Step 5 
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Comment [For each box b use Theorem 3.23 to convert the expansion $j"* to the 
exponential form.] 

do i = l,nbox 
use Theorem 3.23 to convert the expansion $j"* to the exponential form. 

end do 

Step 6 

Comment [For each box b use Theorem 3.22 to shift the exponential expansion from 
b to each box in Vb, List 2 of b.] 

do i = l,nbox 
use Theorem 3.22 to shift the exponential expansion from b to each box 
in Vj,, List 2 of b. 

end do 

Step 7 

Comment [For each childless box b, evaluate the expansions *^"* for all w e Wb, 
List 3 of 6, at every particle r € b.] 

do i = l,nbox 
if b is childless then 

evaluate the expansion ^^''* of each box w eWb ed every particle 
r £b. 

end if 
end do 

Step 8 

Comment [For each box b, create the expansion $|," representing in b the field due to 
particles in Xb, List 4 of b.] 

do i = l,nbox 
Create the expansion W^" of the field due to all particles in Xb. 

end do 

Step 9 

Comment [For each box b use Theorem 3.24 to convert the exponential expansion 
into the expansion of the form (67) and combine with the expansion ^|" 
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computed in Step 7.] 

do i = l,nbox 
use Theorem 3.24 to convert the exponential expansion the expansion of 
the form (67) and computed it with the expansion ^j"*. 

end do 

Step 10 

Comment [Use Theorem 3.12 to shift the local expansions ^'" of parent boxes to 
their children.] 

do 1 = l,nlev-l 
do hi € Bi 

if bi is a child box then 
use Theorem 3.12 to shift a p-term expansion ^"^ 
from 6's parent to h and update ^j". 

end if 
end do 

end do 

Step 11 

Comment [For every childless box h evaluate the expansion ^f," at each particle 
r ^h and add it to the result of Step 7, obtaining the potential at r.] 

do i = l,nbox 
if hi is childless then 

for each particle r € 6^ evaluate the p-term expansion ^j" 
obtaining the potential at location r. 

end if 
end do 

4.4    Complexity analysis 

Step Operation 
count 

1 Np Each particle is assigned to a box at every level. There are 
at most p levels of refinement. 

2 33Nps       The direct computation of interactions between any two 
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childless boxes requires at most ^ operations. The total 
number of boxes appearing on a List 1 of a box does not 
exceed ^ (see [2]). 

3 Np Each particle contributes to a p-term expansion $j"* of 
a unique childless box h containing it. 

4 Each translation requires p^ operations and there are at most 
^ boxes (see [2]). 

5 5Np2, 
Each translation requires pq operations. The total number 
of boxes is bounded by ^. 

6 135Npg 
s Each diagonal translation requires q operations and there 

are at most 27 boxes on any List 2. 
7 32iVp2 Computing the interactions of all particles in a box h with 

a box in Wh requires ps operations. The total number of 
boxes appearing on a List 3 does not exceed ^ME (gee [2]). 

8 32iVp2 Computing the interactions of a box h with all particles in 
a box in X^ requires ps operations. The total number of 
boxes appearing on a List 4 does not exceed ^-^ (see [2]). 

9 5Np^q 
s Each translation requires pq operations. The total number 

of boxes is bounded by ^. 
10 BNf 

s Each translation requires p^ operations. 
11 Np-fN A p-term expansion *^"* is evaluated at each particle. 

Summing up requires extra N operations. 

Combining the CPU times for all the above stages, we obtain the estimate 

T = N{a^ + h^ + cps + dp'), 
s          s (130) 

where the constants a, 6, c, d depend on the implementation. The parameter s, the maxi- 
mnm ] aumber of particles in a childless box, should be chosen so as to minimize the CPU 
time. An elemental y calculation shows that the minimal time Tmin 

(131) Train = Np'Ja + 0^, 

is obtc lined for 

(132) 
pi         q 
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with constants a, ji dependent on the particular implementation. Since p ^ q, we arrive 
at the estimate 

Tmin = iNp^ = 7iV (log2 J)2, (133) 

where the constant 7 depends on the implementation. 
The storage requirements are determined by the lentgh of expansions and the total 

number of boxes, which does not exceed ^. Per box, we store 2p coefficients of singular 
functions and iq coefficients of exponentials. Additionally, we store the position and the 
charge of each particle and corresponding p values of singular functions. Therefore, the 
storage requirements are of the form 

S = ;V(c,i°^l±^ + cp) (134) 

with the constants ci,C2 dependent on the implementation. If 5 = Smin, we obtain 

5 = C3iVlog2-, (135) 

where C3 depends on the implementation. 

Remark 4.1 A careful examination of (135) shows that even though the storage re- 
quirements of the algorithm are proportional to the number of particles, the associated 
constant is quite large, especially in double precision calclations. This limits the size of 
problems which can be handled in computing environments where the available memory 
is limited. Moreover in systems with virtual memory, it is liable to increase the wall-clock 
time of the algorithm. This problem is presently being addressed by the authors. 

5    Numerical results 

The algorithm described in Section 4 has been implemented in Fortran 77 and numerical 
experiments have been performed on a SPARCstation 2. We compare its performance 
with an implementation of the FMM from [2], and with direct application of the poten- 
tial matrix. We give the results for three regimes: particles uniformly distributed in a 
square, particles located uniformly on a curve and particles clustered within a square. 
All calculations were done in double precision, and extended (quadruple) precision was 
used to determine the relative errors. The number of particles varied between 400 and 
25,600, with charge strengths randomly distributed on the interval   (0,1). 

The results of our experiments are given in Tables (6-8). In each table the first 
column contains the number N of particles in a simulation. Second,third and forth 
columns show the CPU times Tnew,Toid,Tdir in seconds of the present algorithm, the 
algorithm described in [2] and of the direct calculation, respectively. The fifth, the sixth 
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* 

Table 6: Uniformly distributed particles. 

N T Told Tdir ■t-fnew Eoid Edir 
400 0.3 1.5 1.0 2.210-is 4.4 10-16 4.310-16 
800 0.8 2.7 4.1 3.410-is 1.410-15 6.110-16 

1600 1.5 7.1 16.9 3.410-16 5.2 10-15 2.210-16 
3200 3.5 10.9 68.6 3.110-16 1.310-15 8.510-16 
6400 6.4 32.2 277.3 2.410-16 5.6 10-16 1.310-15 

12800 12.9 46.9 (1100) 3.610-16 4.9 10-16 — 

25600 26.7 143.5 (4400) 4.910-16 4.6 10-16 — 

Table 7: Particles distributed on a curve. 

N T -'■new Told Tdir ^new Eold Edir 
* 400 0.3 1.2 1.0 2.6 10-" 1.7 10-" 2.5 10-" 

800 0.6 2.5 4.2 2.310-1^ 3.2 10-" 2.3 10-" 
1600 1.2 3.8 17.2 7.7 10-" 9.2 10-" 5.110-" 
3200 2.6 7.7 69.4 3.4 10-" 4.110-" 8.910-" 
6400 5.4 15.4 283.2 2.110-13 2.8 10-13 3.110-13 

12800 10.9 30.7 (1100) 2.310-13 3.7 10-13 — 
25600 21.6 58.8 (4400) 7.4 10-13 6.9 10-13 — 

and the seventh column contain the corresponding relative errors Enew,Eoid,Edir.  The 
errors are computed in the P norm via the formula 

where $,• is the value of the potential at the ith particle position obtained in a direct 
calculation in extended (quadruple) precision, and $,• is the corresponding value obtained 
by one of the three methods in question. 

9 

In the first set of experiments particle positions are generated randomly, resulting 
in their nearly uniform distribution (Figure 5). In the second set of tests particles are 
uniformly distributed on an ellips (Figure 6). The third set of tests is performed for a 
nonuniform distribution of particles within a square (Figure 7). 

In all cases the maxium number of particles in a childless box is set to 44. 

33 



0.4 

0.2 

0.0 

-0.2 

-0.4 

•• 
.;;■;•.■ 

/      ' "•«
 

0 • ••• V • - 

•;. ; * • ,     , • 
* 

S 

■          •'. 
. 

•■/■. 

•*      %     ' 
%   ** •     . . ' 

*          ■               • •♦ •    ..   •■• 

•• 
••' . .- 

•             1 *•   " •. 
9' 

• *• "        •• 

t 
■ • '.     '. 

•     •;' • •■ 

. ,•■ 

%    . 

*• 
V 

'• 

••• 

.     . •       •; 
•..' 

•', *% •• * 

•. 
*         ^ * 

*      * ' % 
.      -.     • 

•    **         , •      • / 

*         • 

■■■■.: 

• "     .   / 

—s  

* •' 
,         • 

-0.4 -0.2 0.0 0.2 0.4 

Figure 6: Uniformly distributed paxticles and the asso- 
ciated partition of the computational box. 

34 



10 

-5 

t- \ 

\ 

\ 

-\ 

\ 

\ 

\ 

V- ■ 
^                  ' 

\ V 
V 

\ 

V I 
^v -L 

•10 
 1 1 1 1 1 1 1 1 1 1 1 I I I I I I I I L 
-10 -5 0 5 10 

Figure 7: Particles distributed on a curve. 

35 



0.2 h- 

0.1 

0.0 

-0.1 

'43 
?-iv. 

*-r^ 

W 

t 

iK 

^«%«i .••. t;; r?:-(-- 

-0.2 bt 
-0.2 -0.1 0.0 0.1 0.2 

Figure 8: A nonuniform distribution of paxticles. 

36 



Table 8: A nonuniform distribution of particles. 

TV J-new Told Tdir ■tjnew Eoid Edir 
400 0.5 1.4 1.0 3.5 10-13 3.510-13 3.010-13 

800 1.2 2.8 4.2 1.110-12 1.110-12 1.110-12 

1600 2.3 5.2 17.1 1.110-12 1.1 10-12 1.110-12 

3200 4.9 11.6 69.0 3.910-13 3.9 10-13 3.710-13 

6400 8.7 25.8 285.2 4.910-13 4.9 10-13 2.710-12 

12800 17.8 52.6 (1100) 6.710-12 6.810-12 — 

25600 34.7 110.6 (4400) 2.510-12 2.510-12 — 

The following observations can be made from the experiments: 
(1) The CPU time of the present algorithm grows linearly with N. The breakeven 

point with the direct calculation ranges from NQ = 140 for uniformly distributed particles 
to A^o = 190 for a highly nonuniform distribution. 

(2) The performance of the algorithm does not depend significantly on the type of the 
particle distribution. The timings for a highly nonuniform distribution are about 60% 
higher that in the case of uniformly distributed particles. 

(3) The accuracy obtained by the algorithm agrees with the error bounds (3.15) and 
(3.13). 

6    Conclusions 

A new version of the Fast Multipole algorithm for Coulombic interactions has been devel- 
oped. While the prior schemes use Laurent and Taylor series to represent the potential, 
we use singular functions of an appropriately chosen operator, obtaining a much faster 
convergence. We also introduce an intermediate representation, in which most transla- 
tion operators are diagonal. In two dimensions, the resulting scheme is three to five times 
faster than the best implementations of the old FMM we are aware of; we expect the 
ratio to be much higher in three dimensions. 

The CPU time estimate and the storage requirements for the algorithm are of the 
order of 0{N), where A'' is the number of particles. Its performance does not depend 
significantly on the particle distribution. 

The three-dimensional version of the algorithm is being implemented, and will be 
presented at a later date. 
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Appendix A 

Estimates for the singular values of the operators Cin 
and Cout 

In this section we will express the operators Cin '■ JC^(Z)°"*) -^ L^{D^'^), 
Cout ■ L'^{D^'^) —^ L'^[D°^^) by means of the Cauchy integral operator commonly encoun- 
tered in complex analysis and derive inequalities (39) from corresponding inequalities for 
the new operator. 

We will define arclength parametrizations 71 : [0,4] -^ D'", 72 : [0,12] ->■ 1)°"*, of the 
squares D'", D°"*, respectively, by the formulas 

7i(^) = < 

\-t^-\i for    0 < f < 1 
-\ + {\-t)i       for    l<t<2 
-\ + t-\i for    2<t<3 ^^'^'> 

A^{-\ + -t)i       for    3<i<4 

72W=3 7i(-) for 0<i<12. (138) 

Obviously,   except  for  the  corners  of the  squares,   71,   72   are  differentiable and 
l7il = KI = l. 

Finally, we define the Cauchy integral operator CQ : L'^{D''^) -> L'^{D°'^*) by the 
formula 

(139) 

Observation A.l Denoting by My^ : P{D''') -^ L^{D''') the unitary operator of mul- 
tiplication by j[, we observe that Co = CoutM^^. Therefore, the singular values of the 
operator Cout ".re identical to those of Co- 

Suppose that ri, r2 are real numbers such that  ^  <  ri   <  r2   <   |.    We will 
denote by ^i and ^2 the circles Si = {\z\ = r^} and ^2 = {[^l = r2} oriented coun- 
terclockwise.   We define, respectively, the integral operators Cl^ : L\S-i) -^ P(D°'^^) 
C;^''^ : L^Si) -. L\S2), C;^ -. L\D^-) -. L\S,) by the formulae 
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Lemma A.2 If the operators CQ, Cl^, Cj^'''^ C3* are defined by formulae (139-142), re- 
spectively, and ^ < ^1 < r2 < |, then 

Proof. Applying twice Cauchy's integral formula for an unbounded domain (see [6, vol.1, 
p.318]), for an arbitrary function / G i^(D'") we have 

C?'''{C;'fm = -C's^fiO, iC € S,), (144) 

c?{c;'f){z) = -c;^f{z), {z e D°^'). (145) 

Combining (144) with (145), we obtain 

ci^{c;^'^^c;^f){z) = ci^{-c;^f){z) = ci^f{z) = Cof{z), (i46) 

for any z € I>°"*. D 

The following lemma is well-known (see [3, p.98 and p.144]). 

Lemma A.3 Suppose that Xi, X2, Xz, X4, are piecewise smooth curves in R,'^. If 
A : L\X2) -^ L\Xi), B : L\Xz) -> L^X^), C : L\X4) -> L\Xz) are hounded in- 
tegral operators, and B is a Hilhert-Schmidt operator, then the composition ABC is a 
Hilbert-Schmidt operator. Moreover, if we denote by Sn{B) and Sn{ABC) the singular 
values of the operators B and ABC, respectively, then 

s4ABC)<\\A\\\\C\\sn{B), (147) 

for all n=l,2,  

Lemma A.4 Suppose, that {4>n} and {ipn} are orthonormal systems in L'^{Si) and 
L^{S2), respectively defined for n=1,2,..., by formulae 
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Then 

C?'^V=E(-)""(/'<^n)V'n, (150) 
n=l  ^'^2/ 

is a Singular Value Decomposition for the operator 62^'^^ : L^{Si) -^ L^{S2)- In particu- 
lar, the singular values s„(C2^'''^) o/Cj^'''^ are given by the formulae 

ri \" 2 
^n{C?''n=[fJ , (151) 

for n=1,2,.... 

Proof. Obviously, for any ( & Si, z e S2, 

1 

^ - ^ n=l 

= _£^-n^n-l_ ^^52) 

Combining (141) with (152), we obtain 

^""^« = hLf^j(=-hp-isj^('>(""'^ 
1    00       . 

-i:^-"X./(oe</3«) 
27rr: 

00 1     0°       /.         

^^"1 n=l *'^l 

= E r^       (/,^OV'n(^)- (153) 

The following two theorems establish bounds from above and from below for the 
singular values of the operator Cout- We only prove Theorem A.5 below; the proof of 
Theorem A.6 is nearly identical, and is omitted. 

Theorem A.5 For any real number ^ < p <1 there exists a constant c> 0, such that 

SniCout) < cp'^, (154) 

for all n=l,2,..., where Sn{Cout) are the singular values of the operator Cout ■ 

Proof. Defining real numbers ri, r^ by the formulae 

v^+3/? ^^^^^ 
ri = —^ , (155) 
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r2 = -, (156) 
P 

we observe that 
V2 3 ,     , 
■y- < ri < r2 < -. (157) 

Let us consider the operators Co, C[% Ca''""', C^^ defined by formulae (139-142). Clearly, 
^ < ri < r2 < |. p = ^. Combining (143) with (147), we obtain 

^n(Co) = 5„(CpCp''-^qO < \\C?\\ ^n(C?'^=) liq^l- (158) 

According to Observation A.l, the singular values of operators Cout and CQ coincide. Now 
Lemma A.4 gives 

Sn{C,ut) = Sn{Co) < ||Cp || S^C,'^''') \\C;^\\ = C   (^f j     = Cp\ (159) 

for all n=l,2,  D 

Theorem A.6 For any number 0 < p < ^ there exists a constant c> 0, such that 

Sn{Couty> Cp^, (160) 

for all n=l,2,..., where Sn{Cout) denote the singular values of the operator Cout ■ 
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Appendix B 

Estimates for the singular functions of the operators 
^in 3-nCl Lout 

In this section we estimate the maxima of singular functions of the operator Cout- We 
begin with four technical lemmas. 

Lemma B.l Ifn > 0 is an integer and P : € ^ € is a polynomial of degree n-l, then 

WPWL'^I-I,!] < ^ ||P|U^[-i,i], (161) 

(for definitions of\\ ■ ||i,2[_i_i] and \\ • ||L°°[-I,I] see Section 2.1). 

Proof. Let Pk denote the Legendre polynomials on the segment [-1,1]. It is well-known 
(see [1]), that 

||Pfc|k-[-i,i] = 1, (162) 

\\Pk\\h[-i,i] = ^^- (163) 

Obviously, there exist unique complex coefficients co, ci,..., c„_i such that 

n-l 

P^Y.^'kPk, (164) 

and, consequently, 

ll^lli^[-i,i] = E M ||P.||i.[-x,x] = E \ok? rr^. (165) 
k=0 k=0 ^K i-1 

Now, due to Schwarz's inequality, we have 

l|PM-i,i] < EkMiniUcoM4] = Ek^l = E^Tkl-™= 
k=0 k=0 k=0       V^ V^K +1 

n 

The following lemma is readily obtained from Lemma B.l by scaling. 
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Lemma B.2 Suppose, that n > 0 is an integer and P : C —> C fs a polynomial of degree 
n — 1. /f / C C is any segment of length a > 0, then 

n 
\\P\\L-(I) < ^ \\P\\i?iiy (167) 

Lemma B.3 There exists a constant Ci > 0 such that for any segment I C i?°"* of length 
a > 0, integer n > 0 and any f € L^(D^^) there exists a polynomial P of degree n — 1 
satisfying 

||a.t/-PiUoo(,)<cia'^||/||2, (168) 

with the operator Cout : i^(I>'") -^ L^{D°''^) defined by (30). 

Proof. Differentiating (30) n times we obtain 

(a../)W(z) = n! /^,__ (^/g„,., <(.({), (169) 

and, due to Schwarz's inequality, we have 

||(Co„*/)(")||oo<cxn!||/||2, (170) 

where Ci > 0 is a constant. Let us denote by ZQ the midpoint of the segment / and let P 
be the Taylor polynomial of order n — 1 centered at ZQ for the function Coutf- Now, the 
Taylor's formula implies that 

\Coutf{z) - P{z)\ < li^ max |(C.„,/)W(OI, (171) 

and therefore 

WCoutf - P\\L-ii) < ^ ll(Co.*/)(")||oo < ci ^ II/II2 < ci a" II/II2. (172) 

Lemma B.4 There exists a constant c>0, such that for any f e Z^(D'") 

Iia../||c<> < c \\C..Jh flog %*P^ + l] , (173) 

where the operator C^ut : ^^(-D'") -^ L^{D'"'^) is defined by (30). 
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Proof. Let 0 < a < 1 be a real number and / any segment of length a included in the 
square Z)""*. For an integer n > 0 and / G P{D''') denote by P the polynomial provided 
by Lemma A.9. Due to Lemma A.8 we have 

\\Coutf\\L°°{I)     <     \\Coutf - -P||L«'(/) + ||-P||L«'(/) 

<   l|Co.*/-P|Uco(,) + ^||P||^.(,). (174) 

We will need the following obvious inequality 

\\P\\L^I)     <     \\Coutf-P\yiI) + \\Coutf\\Lm) 

<    \^\\Coutf-P\\L^iI) + \\Coutf\\LHl). (175) 

Combining (168), (174) and (175) we obtain 

\\Coutf\\L<^(i)   <   (n + l)||a.*/-P|Uoo(,) + ^||a,,/|U.(,) 

<_   e3n|,C../,(<..Mai,_L), ,,,) 

with some constants C2 > 0, C3 > 0.   Setting a = ^ (where e is the base of natural 
logarithms), and 

n = l,g 11^0^^1111/11 
+ 1, (177) 

WCoutfh 
we arrive at 

WCoutfh^H) < c ||a.,/|b log {j^^ + 1) , (178) 

where c > 0 is a constant.   Since every point in 1)°"* is contained in some segment 
/ C D°^* of length a = J, the lemma follows. D 

Now we proceed to the principal result of this section. 

Theorem B.5 Let xj;^, V-^* he the left singular functions of the operators dn andCout, 
respectively.  Then there exist constants 0 < 9 < 1 and c> 0 such that 

UnWoo   <   en, (179) 
llV-riloo   <   en, (180) 

for all n=l,2,  

44 



Proof.  Since Cout<l>T^ = -s^^'n"*) Lemma A.IO implies that, there is a constant Cj > 0, 
such that 

^nii^riioo < cx.„iic"iiJiog'i^°f''5"''^+i) 
\ -S„||^       ||2 / 

=     Ci5n(log—+log||C,„i|| + l). (181) 

Now, due to Theorem A.6, there exists a constant c > 0, such that 

||V'riloo<cn, (182) 

for n=l,2, It is easy to see, that Lemma A.IO holds with Cout replaced by dn = C^j, 
and therefore this proof extends to the case of the left singular functions V*!"- ^ 
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